Modul 4



MODUL 4

Kontrol Keamanan Kebun dari Binatang Babi




1. Pendahuluan[Kembali]

    Pada zaman sekarang banyaknya laporan dari masyarakat masalah kebunnya yg sering dimasuki babi dan sering merusak tanaman dan membuat gagal panen yg besar oleh karena itu kami merancang kontrol sederhana keamanan kebun dari binatang babi agar berkurangnya populasi babi dan dapat menjaga kebun dari hama babi itu

2. Tujuan[Kembali]

Tujuan Penerapan Sistem Kontrol Keamanan Kebun dari Babi Liar

  1. Mengembangkan sistem pengaman kebun berbasis sensor yang mampu mendeteksi pergerakan babi liar secara otomatis untuk mencegah kerusakan tanaman.

  2. Mengurangi risiko serangan babi liar dengan memanfaatkan sensor gerak (PIR/ultrasonik) untuk mengaktifkan jebakan perangkap yg dapat mengurung si babi

  3. Meningkatkan efektivitas perlindungan kebun tanpa pengawasan terus-menerus, sehingga petani dapat menjaga tanaman secara lebih efisien dan aman.

  4. Meminimalkan kerugian hasil panen melalui kontrol otomatis yang mampu memberikan respon cepat terhadap ancaman hewan babi.

3. Alat dan Bahan [Kembali]

A. Alat

  1. Breadboard

 


  2. Kotak Plastik


 3. Solder 


 4. Adapter 12V

B. Bahan

1. Infrared Sensor 



     

  2. LDR Sensor 


 

3. Konveter DC - DC



Konverter dc - dc mengubah tegangan dc jadi lebih rendah atau lebih tinggi

    5. Jumper 







  


  3. Operational Amplifier tipe  tl082cp




  4. Transistor 2SD882

Spesifikasi:


Karakteristik:


  5. Potensiometer


Potensiometer adalah sebuah alat elektronik yang digunakan untuk mengukur dan mengontrol tegangan listrik dalam suatu rangkaian. Potensiometer sering digunakan sebagai pengatur volume pada perangkat audio, pengatur kecerahan lampu, dan dalam berbagai aplikasi lain yang memerlukan kontrol variabel terhadap tegangan atau arus listrik

  6. Resistor

Tabel Warna

  7. Relay






    Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch).

    8. Motor Gitbook DC 5V

  Motor dc yg telah di modifikasi agar melakukan putaran seperti roda mobil dengan penambahan gir agar putarannya dapat 2 roda sekaligus

9. LED
  • LED

komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya
.Limit Switch

Limit adalh komponen yg berguna untuk mengubah arah arus dari nc ke no secara manual dengan cara menekan langsung limitnya 


4. Dasar Teori [Kembali]

1) Resistor

Simbol :
Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R).
Jenis Resistor yang digunakan disini adalah Fixed Resistor, dimana merupakan resistor dengan nilai tetap terdiri dari film tipis karbon yang diendapkan subtrat isolator kemudian dipotong berbentuk spiral. Keuntungan jenis fixed resistor ini dapat menghasilkan resistor dengan toleransi yang lebih rendah.
Cara menghitung nilai resistor:
Tabel warna

Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak  = Toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.


2) Transistor

Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

3. Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.
 

Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 


Rumus-rumus transistor:
Spesifikasi :
    • Bi-Polar Transistor
    • DC Current Gain (hFE) is 800 maximum
    • Continuous Collector current (IC) is 100mA
    • Emitter Base Voltage (VBE) is > 0.6V
    • Base Current(IB) is 5mA maximum
Konfigurasi Transistor
Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.

3) Relay




    Relay adalah suatu peranti yang bekerja berdasarkan elektromagnetik untuk menggerakan sejumlah kontaktor yang tersusun atau sebuah saklar elektronis yang dapat dikendalikan dari rangkaian elektronik lainnya dengan memanfaatkan arus listrik sebagai sumber energinya. Kontaktor akan tertutup (menyala) atau terbuka (mati) karena efek induksi magnet yang dihasilkan kumparan (induktor) ketika dialiri arus listrik. Berbeda dengan saklar, pergerakan kontaktor (on atau off) dilakukan manual tanpa perlu arus listrik.


    Fungsi-fungsi dan Aplikasi Relay

    Beberapa fungsi Relay yang telah umum diaplikasikan kedalam peralatan Elektronika diantaranya adalah :
  1. Relay digunakan untuk menjalankan Fungsi Logika (Logic Function)
  2. Relay digunakan untuk memberikan Fungsi penundaan waktu (Time Delay Function)
  3. Relay digunakan untuk mengendalikan Sirkuit Tegangan tinggi dengan bantuan dari Signal Tegangan rendah.
  4. Ada juga Relay yang berfungsi untuk melindungi Motor ataupun komponen lainnya dari kelebihan Tegangan ataupun hubung singkat (Short).

Kapasitas Pengalihan Maksimum:

 
  


    Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

4) LED


Tabel warna dan material LED

 
 5) Infrared sensor

            Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier). Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP.

Prinsip Kerja Sensor Infrared




Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.



Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:



Grafik Respon Sensor Infrared:

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.

6) Sensor LDR
merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini. LDR juga dapat digunakan sebagai sensor cahaya. Perlu diketahui bahwa nilai resistansi dari sensor ini sangat bergantung pada intensitas cahaya. Semakin banyak cahaya yang mengenainya, maka akan semakin menurun nilai resistansinya. Sebaliknya jika semakin sedikit cahaya yang mengenai sensor (gelap), maka nilai hambatannya akan menjadi semakin besar sehingga arus listrik yang mengalir akan terhambat.




Umumnya Sensor LDR memiliki nilai hambatan 200 Kilo Ohm pada saat dalam kondisi sedikit cahaya (gelap), dan akan menurun menjadi 500 Ohm pada kondisi terkena banyak cahaya. Tak heran jika komponen elektronika peka cahaya ini banyak diimplementasikan sebagai sensor lampu penerang jalan, lampu kamar tidur, alarm dan lain-lain.
LDR berfungsi sebagai sebuah sensor cahaya dalam berbagai macam rangkaian elektronika seperti saklar otomatis berdasarkan cahaya yang jika sensor terkena cahaya maka arus listrik akan mengalir(ON) dan sebaliknya jika sensor dalam kondisi minim cahaya(gelap) maka aliran listrik akan terhambat(OFF). LDR juga sering digunakan sebagai sensor lampu penerang jalan otomatis, lampu kamar tidur, alarm, rangkaian anti maling otomatis menggunakan laser, sutter kamera otomatis, dan masih banyak lagi yang lainnya.
Prinsip kerja LDR sangat sederhana tak jauh berbeda dengan variable resistor pada umumnya. LDR dipasang pada berbagai macam rangkaian elektronika dan dapat memutus dan menyambungkan aliran listrik berdasarkan cahaya. Semakin banyak cahaya yang mengenai LDR maka nilai resistansinya akan menurun, dan sebaliknya semakin sedikit cahaya yang mengenai LDR maka nilai hambatannya akan semakin membesar.
grafik respon sensor LDR





7) Op-Amp
  • Penguat operasional atau yang dikenal sebagai Op-Amp merupakan suatu rangkaian terintegrasi atau IC yang memiliki fungsi sebagai penguat sinyal, dengan beberapa konfigurasi. Secara ideal Op-Amp memiliki impedansi masukan dan penguatan yang tak berhingga serta impedansi keluaran sama dengan nol. Dalam prakteknya, Op-Amp memiliki impedansi masukan dan penguatan yang besar serta impedansi keluaran yang kecil.

    Op-Amp memiliki beberapa karakteristik, diantaranya:
    a. Penguat tegangan tak berhingga (AV = ∼)
    b. Impedansi input tak berhingga (rin = ∼)
    c. Impedansi output nol (ro = 0) d. Bandwidth tak berhingga (BW = ∼)
    d. Tegangan offset nol pada tegangan input (Eo = 0 untuk Ein = 0)

    Rangkaian dasar Op Amp


        Dan pada rangkaian ini digunakan konfigurasi Op-Amp sebagai berikut :

        - Komparator Inverting

        a. Dengan Vref = 0 Volt
Rangkaian komparator inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref = 0 Volt adalah seperti gambar 88.
Untuk menghitung berapa tegangan ambang VUT(Upper Threshold Voltage) atau VLT(Lower Threshold Voltage) maka lakukan pemisalan kondisi tegangan output VO sama dengan +Vsat atau –Vsat.
Misalkan tegangan output VO = +Vsat seperti gambar 89 maka dapat dihitung tegangan ambang atas VUT:
Misalkan tegangan output VO = -Vsat seperti gambar 90 maka dapat dihitung tegangan ambang bawah VLT:
Bentuk gelombang tegangan output VO adalah seperti pada gambar 91 dan karakteristik I-O seperti pada gambar 92.
b. Dengan Vref 0 Volt
Rangkaian komparator inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref 0 Volt adalah seperti gambar 93.
Misalkan tegangan output VO = +Vsat seperti gambar 94 maka dapat dihitung tegangan ambang atas VUT:
Misalkan tegangan output VO = -Vsat seperti gambar 95 maka dapat dihitung tegangan ambang bawah VLT:
Bentuk gelombang tegangan output VO adalah seperti pada gambar 96 dan gambar 97 dan karakteristik I-O seperti pada gambar 98 dan gambar 99.

        -Voltage Follower
 Rangkaian voltage follower atau buffer dimana ACL = 1
Syarat op-amp ideal adalah E= 0 maka VO = Vi sehingga
 Bentuk gelombang tegangan input dan gelombang tegangan output adalah sama karena ACL = 1 dan sefasa karena Vi diinputkan ke kaki non inverting seperti pada gambar 130 dan kurva karakteristik I-O seperti gambar 131.
 


8) Converter DC-DC (LM2596)


Regulator seri LM2596 adalah sirkuit terpadu monolitik yang menyediakan semua fungsi aktif
untuk regulator pensaklaran step-down (buck), yang mampu menggerakkan beban 3 A dengan pengaturan saluran dan beban yang sangat baik. Perangkat ini tersedia dalam tegangan keluaran tetap 3,3 V, 5 V, 12 V, dan versi keluaran yang dapat disesuaikan.
Dengan jumlah minimum komponen eksternal yang dibutuhkan, regulator ini mudah digunakan dan termasuk kompensasi frekuensi internal dan osilator frekuensi tetap. Seri LM2596 beroperasi pada frekuensi pensaklaran 150 kHz, sehingga memungkinkan komponen filter berukuran lebih kecil daripada yang dibutuhkan dengan regulator pensaklaran frekuensi rendah. 

Komentar

Postingan populer dari blog ini

modul 2 transistor

Tb Elektronica